

Community Antibiograms

South Central Idaho

Antibiograms summarize local antimicrobial resistance profiles, supporting clinicians in selecting appropriate empiric antibiotics prior to the availability of organism-specific susceptibility. The tables below show the **percentage of microbial isolates susceptible to various antibiotics**. The data was collected in 2024 from Intermountain Health emergency departments and inpatient facilities within the stated geographical region.

Definitive antibiotic therapy should be based on the causative organism(s) susceptibility profile and clinical context once identified.

Susceptibility Rates (%) of Gram-Negative Isolates to Common Antimicrobials

N (#) Species / Organism		Antimicrobials																																	
		Ampicillin/Clavulanate		Ampicillin/Sulbactam		Cefazolin		Cefepime		Ceftriaxime		Ceftazidime		Ceftriaxone		Ciprofloxacin		Ertapenem		Gentamicin		Levofloxacin		Meropenem		Nitrofurantoin*		Piperacillin/Tazobactam		Tetracycline		Tobramycin		Trimethoprim/Sulfamethoxazole	
348	<i>Escherichia coli</i>	82	60	82	89	88	86	78	100	91	84	100	98	98	76	91	77																		
79	<i>Klebsiella pneumoniae</i>	87	85	89	90	91	91	89	100	92	94	100	64	96	82	92	86																		
30	<i>Proteus mirabilis</i>	100	90	93	97	97	97	73	100	83	73	100	100	100	83	83	73	100	100	100	100	100	100	100	100	100	100								
29	<i>Pseudomonas aeruginosa</i>						100	97			79				69	100			97																
16	<i>Enterobacter cloacae</i> complex						100	75	75	88	94	100	100	100	100	100	100	50	94	88	100	94													
14	<i>Klebsiella oxytoca</i>	93	79	7	100	93	93	93	100	100	93	100	85	100	100	100	100	100	100	100	100	100	100	100	100	100	100								

Susceptibility Rates (%) of Gram-Positive Isolates to Common Antimicrobials

N (#)	Species / Organism	Ampicillin	Clindamycin	Not For UTI	Daptomycin	Levofloxacin	Linezolid	Nafcillin	Nitrofurantoin*	Penicillin	Tetracycline	Trimethoprim/Sulfamethoxazole	Vancomycin
55	<i>Enterococcus faecalis</i>	98			62	96*	100		100	98	21		100
33	MSSA		82	100		100	100	100		89	100	100	
18	<i>Staphylococcus</i> sp coag neg		50	100		100	61	100		100	94	94	
17	<i>Staphylococcus epidermidis</i>		83	100		100	47	100		88	71	100	
12	MRSA		100	100		100	0	100		80	100	100	

* For cystitis only

Interpret the data cautiously in organisms with ≤ 30 isolates, as they may not be accurate.

- In 2024, 8% of *E. coli* and 5% of *K. pneumoniae* screened positive for extended spectrum β -lactamase (ESBL).
- Aminoglycoside monotherapy is not recommended for most infections. Gentamicin is no longer recommended for *P. aeruginosa*.
- Certain organisms, including *Enterobacter cloacae*, *Klebsiella aerogenes*, and *Citrobacter freundii* can become resistant to 3rd-generation cephalosporins (ceftriaxone, cefotaxime, ceftazidime) during treatment of severe infections despite initial *in vitro* susceptibility. Cefepime may be an alternative option and higher doses may be required.
- Enterococcus* spp. are intrinsically resistant to cephalosporins. Fluoroquinolones (e.g., ciprofloxacin, levofloxacin) should not be used to treat any enterococcal infection except uncomplicated cystitis in patients with severe penicillin allergy.
- Ertapenem is not active against *Pseudomonas*, *Acinetobacter*, or *Enterococcus* spp.
- Beta-lactamase positive *Haemophilus* spp. are resistant to penicillin, ampicillin, and amoxicillin.
- Beta-hemolytic streptococci (Groups A, B, C, G) are universally susceptible to β -lactams (penicillins, cephalosporins) and vancomycin; therefore routine susceptibility testing is not needed for these agents. However, resistance to clindamycin and azithromycin can be present.
- Methicillin-susceptible *Staphylococcus aureus* (MSSA) are resistant to penicillin, ampicillin, and amoxicillin. First-line agents are nafcillin/dicloxacillin and cefazolin/cephalexin. Second-line agents include: amoxicillin/clavulanate, ampicillin/sulbactam, cefuroxime, and ceftriaxone.
- S. aureus* bacteremia in adults must be treated with intravenous antibiotics and infectious diseases should be consulted. Outcomes with β -lactam treatment for MSSA are better than vancomycin. *S. aureus* in the blood is never a contaminant.